Инвертор КТИ 150-3 ТСКЯ.435333.003 ТСКЯ.435333.003-01

Инвертор КТИ 150-6 ТСКЯ.435333.005 ТСКЯ.435333.005-01

Инвертор КЛИ 150-3 ТСКЯ.435333.001

Инвертор КЛИ 150-6 ТСКЯ.435333.002

Руководство по эксплуатации

Содержание

1	Описание и работа изделия	4
1.1	Назначение изделия	4
1.2	Внешний вид изделий приведен на рисунках ниже.	4
1.3	Технические характеристики.	6
1.4	Структурные блок-схемы	8
2	Комплектность	9
3	Маркировка	11
4	Упаковка	11
5	Использование по назначению	12
5.1	Эксплуатационные ограничения	12
5.2	Подготовка изделия к использованию	12
5.3	Подключение КЛИ 150-3 и КЛИ 150-6.	13
5.4	Подключение КТИ 150-3 и КТИ 150-6	21
5.5	Включение устройства	32
5.6	Общая схема подключения	33
5.7	Работа с Экраном управления	36
5.8	Подключение к компьютеру	36
5.9	Работа с Интерфейс USB-CAN ISO	36
5.10	Калибровка устройства	37
5.11	Таблица возможных флагов	39
6	Перечень возможных неисправностей изделия	41
7	Транспортирование и хранение	42
7.1	Транспортирование	42
7.2	Хранение	42

Настоящее руководство по эксплуатации (РЭ) распространяется на Инвертор КЛИ 150-3 ТСКЯ.435333.001, Инвертор КЛИ 150-6 ТСКЯ.435333.002, Инвертор КТИ 150-3 ТСКЯ.435333.003 и инвертор КТИ 150-6 ТСКЯ.435333.005 и их исполнений (далее - изделие). Инверторы предназначены для преобразования входного напряжения постоянного тока в выходное напряжение переменного тока.

Руководство по эксплуатации предназначено для изучения обслуживающим персоналом принципа работы, технических характеристик, правил эксплуатации изделия и содержит сведения, необходимые для поддержания его работоспособности.

Лица, допущенные к работе с изделием, должны знать его основные технические характеристики, ограничения по применению, признаки нормального функционирования.

Пример записи изделия в других документах и/или при заказе: «Инвертор КЛИ 150-3», «Инвертор КЛИ 150-6» и «Инвертор КТИ 150-3», «Инвертор КТИ 150-3 исполнение -01», «Инвертор КТИ 150-6», «Инвертор КТИ 150-6 исполнение -01», допускается — «Контроллер КЛИ 150-3», «Контроллер КЛИ 150-6».

Версия руководства от 25.07.2023

1 Описание и работа изделия

1.1 Назначение изделия

Изделие предназначено для управления и обеспечения питания синхронных и асинхронных электродвигателей и электрогенераторов с двусторонней передачей энергии между электродвигателем или электрогенератором и аккумуляторной батареей.

Изделие обеспечивает преобразование электрической энергии, подаваемой от источника постоянного тока. Результатом преобразования является переменный ток через фазы электродвигателя.

1.2 Внешний вид изделий приведен на рисунках ниже.

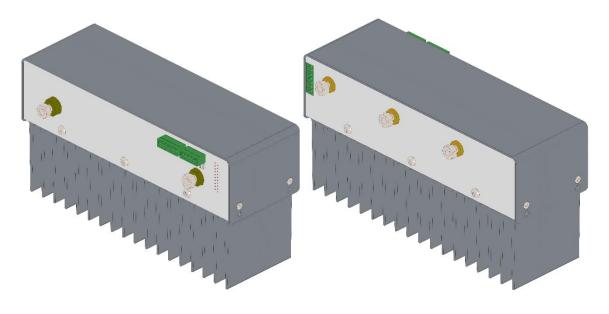


Рисунок 1 – Внешний вид инвертора КЛИ 150-3

Рисунок 2 – Внешний вид инвертора КЛИ 150-6

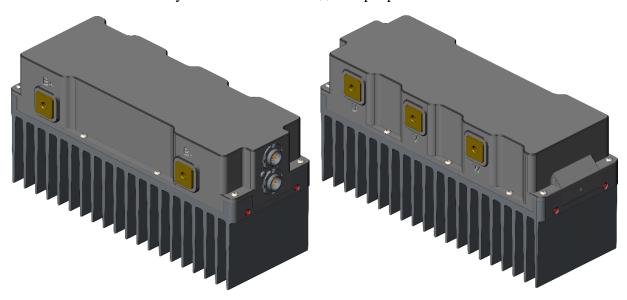


Рисунок 3 — Внешний вид инвертора КТИ 150-3

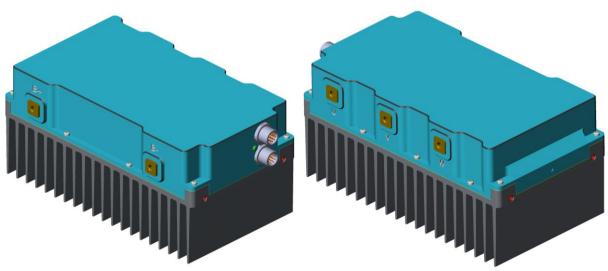
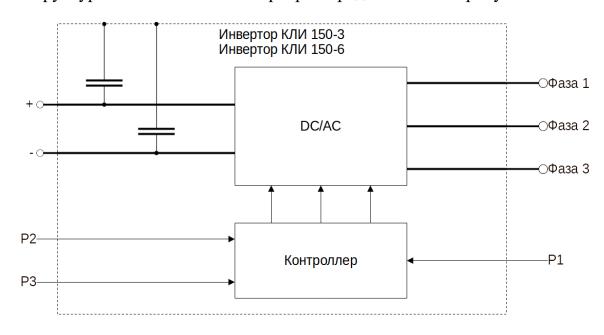


Рисунок 4 — Внешний вид инвертора КТИ 150-6 (исполнение -01)

1.3 Технические характеристики.

1.3.1 Основные технические характеристики изделий представлены в таблице 1:

Таблица 1 – Основные характеристики изделий

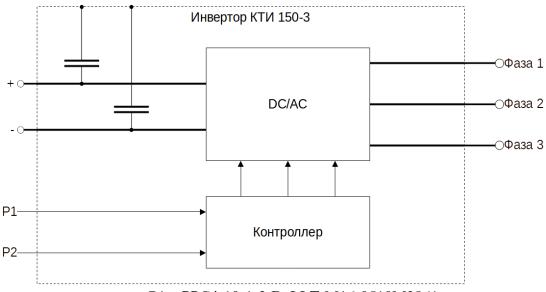

	ные характеристик	, nogethin		КТИ 150-6
	КЛИ 150-3	КЛИ 150-6	КТИ 150-3	(исполнение -
				01)
Наименование параметра		Знач	ения	
Пиковая полная	45	90	45	90
мощность [кВА]	15	70	13	70
Амплитуда номинального	200	500	200	500
фазного тока [А]	200	300	200	300
Амплитуда пикового				
фазного тока [А]	400	800	400	800
(кратковременно в течение	400	800	400	300
30 секунд)				
Входное напряжение [В]	70 - 126			
Частота тока	01200			
электродвигателя [Гц]	0 1200			
Принимаемые сигналы:				
Аналоговые [В]		0.	5	
Цифровые [В]		0 1 ı	3 5	
ШИМ-сигналы [Гц (мс)]	50 400 (1 2)			
Масса [кг]	2,35	3,7	2,76	4,4
Габаритные размеры [мм]	223x117x97,5	223x117x146	249x116x94	258x143x117
Класс защиты	IP40	IP40	IP65	IP65
Рекомендованные для	ТМЛс 16-6	ТМЛ-У 35-6	ТМЛс 16-6	ТМЛ-У 35-6
использования клеммы	1101710 10-0	1 10171- 9 33-0	1101310 10-0	110171- 9 33-0

Основные возможности изделий:

- Векторное сенсорное управление трехфазным синхронным двигателем/генератором;
- Работа с синусно-косинусным датчиком положения ротора;
- Полный контроль ускорения, рекуперативного торможения, генерации энергии;
- Возможность запуска ДВС генератором;
- Управление моментом или оборотами двигателя;
- Полный момент с нулевых оборотов двигателя;
- 4 универсальных цифро-аналоговых входа-выхода;
- Прямое подключение аналоговых органов управления;
- Возможность управления RC-PWM сигналом;
- Передача телеметрии по CAN шине;
- CAN соединение с компьютером через Интерфейс USB-CAN ISO, либо другие CAN-адаптеры;
- CAN соединение с Экраном управления, настройка параметров;
- Объединение нескольких контроллеров для совместной работы с обменом данными по CAN шине;
- Контроль состояния питающей батареи;
- Плавное ограничение момента или мощности на основе информации о напряжении и температуре ячеек и BMS, температурах двигателя и контроллера;
- Контроль температуры двигателя, силовых элементов;
- Программная и аппаратная защита по току;
- Встроенные конденсаторы для фильтрации помех.

1.4 Структурные блок-схемы

Структурные блок-схемы инверторов представлены на рисунках ниже.



P1 – 15EDGVC-3.5-07P-14-00A(H)

P2 - 15EDGVC-3.5-05P-14-00A(H)

P3 - 15EDGVC-3.5-06P-14-00A(H)

Рисунок 5 — Структурная блок-схема КЛИ 150-3 и КЛИ 150-6

P1 - PPC4-10-1-3-B, LLT-M16-0510M2861

P2 - PPC4-10-1-1-B, LLT-M16-10008M2861

Рисунок 6 – Структурная блок-схема КТИ 150-3 и КТИ 150-6

2 Комплектность

Комплект поставки изделия должен соответствовать таблицам ниже:

Таблица 2 – Комплект поставки инвертора КТИ 150-3

Наименование	Обозначение	Кол.
Инвертор КТИ 150-3	ТСКЯ.435333.003	1
Инвертор КТИ 150-3. Паспорт	ТСКЯ.435333.003ПС	1
Соединитель РРС3-10А-7-1-В		1
Соединитель РРС3-10А-7-3-В		1
Винт М6х10 с полукруглой головкой и шестигранным углублением ГОСТ ISO 7380-2TX		5

Таблица 3 – Комплект поставки инвертора КТИ 150-3 исполнения -01

Наименование	Обозначение	Кол.
Инвертор КТИ 150-3	ТСКЯ.435333.003-01	1
Инвертор КТИ 150-3. Паспорт	ТСКЯ.435333.003-01ПС	1
Розетка LLT-M16-10008F1051		1
Розетка LLT-M16-05010F1051		1
Винт М6х10 с полукруглой головкой и		5
шестигранным углублением ГОСТ ISO 7380-2TX		3

Таблица 4 - Комплект поставки инвертора КТИ 150-6

Наименование	Обозначение	Кол.
Инвертор КТИ 150-6	ТСКЯ.435333.005	1
Инвертор КТИ 150-6. Паспорт	ТСКЯ.435333.005ПС	1
Соединитель РРС3-10А-7-1-В		1
Соединитель РРС3-10А-7-3-В		1
Винт М6х10 с полукруглой головкой и		5
шестигранным углублением ГОСТ ISO 7380-2TX		3

Таблица 5 – Комплект поставки инвертора КТИ 150-6 исполнения -01

Наименование	Обозначение	Кол.
Инвертор КТИ 150-6	ТСКЯ.435333.005-01	1
Инвертор КТИ 150-6. Паспорт	ТСКЯ.435333.005-01ПС	1
Розетка LLT-M16-10008F1051		1
Розетка LLT-M16-05010F1051		1
Винт Мбх10 с полукруглой головкой и		5
шестигранным углублением ГОСТ ISO 7380-2TX		

Таблица 6 – Комплект поставки инвертора КЛИ 150-3

Наименование	Обозначение	Кол.
Инвертор КЛИ 150-3	ТСКЯ.435333.001	1
Инвертор КЛИ 150-3. Паспорт	ТСКЯ.435333.001ПС	1
Клеммный блок 15EDGK-3.5-05P-14-00AH		1
Клеммный блок 15EDGK-3.5-06P-14-00АН		1
Клеммный блок 15EDGK-3.5-07P-14-00АН		1

Таблица 7 – Комплект поставки инвертора КЛИ 150-6

Наименование	Обозначение	Кол.
Инвертор КЛИ 150-6	ТСКЯ.435333.002	1
Инвертор КЛИ 150-6. Паспорт	ТСКЯ.435333.002ПС	1
Клеммный блок 15EDGK-3.5-05P-14-00AH		1
Клеммный блок 15EDGK-3.5-06P-14-00AH		1
Клеммный блок 15EDGK-3.5-07P-14-00AH		1

3 Маркировка

Примеры маркировки изделия представлен на рисунках ниже. Заводской номер — девятизначный код, где первые четыре цифры — год изготовления, следующие две — месяц изготовления и последние три — порядковый номер.

Рисунок 7 – Пример маркировки КЛИ

Рисунок 8 – Пример маркировки КТИ

4 Упаковка

Упаковка обеспечивает сохранность и необходимую защиту изделия от воздействия внешних факторов при выполнении погрузочно-разгрузочных работ, транспортировании, хранении.

Упаковка изделия представляет собой коробку с пенопластом, предохраняющую инвертор от повреждений во время транспортировки.

- 5 Использование по назначению
- 5.1 Эксплуатационные ограничения
- 5.1.1 Параметры воздействия внешних климатических факторов приведены в таблице 8:

Таблица 8 – Параметры воздействия внешних климатических факторов

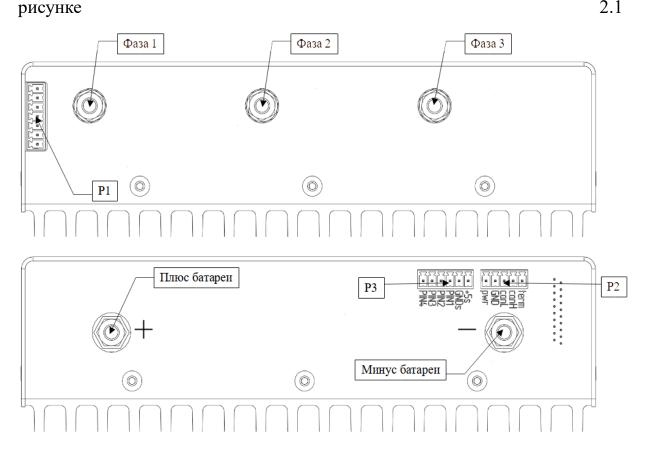
Postořetny vovyně doveton		Значение
Воздействующий фактор		характеристики
Повышенная температура окружающей среды, °С		40
Пониженная температура окружающей среды, °C		Минус 20

- 5.1.2 Место для установки изделия должно быть выбрано с учетом следующих условий:
 - Не устанавливать изделие близко к источникам тепла;
 - Изделия КЛИ 150-3 и КЛИ 150-6 не устанавливать там, где они могут подвергнуться воздействиям влаги.
 - 5.2 Подготовка изделия к использованию
 - 5.2.1 Меры безопасности при подготовке изделия:

При работе с изделием подключение/отключение к внешним цепям производить только при отключенном напряжении электрической цепи.

При подключении изделия к внешним цепям следует использовать кабельные линии и провода надлежащего сечения, не имеющие поврежденной изоляции.

- 5.2.2 Объем и последовательность внешнего осмотра:
 - Проверка целостности корпуса изделия, чистоты присоединительных клемм;
 - Проверка отсутствия нарушений в целостности пломбы предприятия-изготовителя;
 - Проверка комплектности поставки изделия;


 Проверка наличия маркировки изделия и её соответствия эксплуатационной документации.

При обнаружении внешних дефектов, несоответствия комплектности изделия и эксплуатационной документации, изделие следует возвратить продавцу с последующей передачей изделия на предприятие-изготовитель.

- 5.3 Подключение КЛИ 150-3 и КЛИ 150-6.
- 5.3.1 Для подключения использовать кабели с минимальным сечением 16 мм² для КЛИ 150-3 и 35 мм² для КЛИ 150-6 с обжатыми наконечниками, указанными в таблице 1. Перед подключением батареи и двигателя, снять гайки с фазных и батарейных контактов и убедится в отсутствии загрязнения и оксидного слоя. При подключении не допускается замыкание каких-либо кабелей на корпус изделия.
- 5.3.2 Рекомендуется сначала подключить двигатель, затем кабели питания подключить к изделию и в последнюю очередь произвести соединение кабелей питания с силовыми клеммами батареи.
- 5.3.3 Не допускается прикладывать усилие момента затяжки к выходным втулкам фазных и батарейных клемм, что может привести к поломке изделия.

5.3.4 Все разъемы инверторов КЛИ 150-3 и КЛИ 150-6 представлены на сунке

2.1

Р1 – Энкодер и термодатчик двигателя

P2 – CAN-шина

Р3 – Входы управления

Рисунок 9 – Разъемы и выходы контроллера

- 5.3.5 Подключение двигателя
- 5.3.5.1 Подключение осуществлять согласно рисунку 9. Поочередно подсоединить фазы двигателя и наживить гайки на фазные контакты изделия. Затянуть гайки, момент затяжки должен составлять 6-8 Н·м.
 - 5.3.6 Подключение батареи
- 5.3.6.1 Подключение осуществлять только при отключенной батарее. Присоединять кабели согласно маркировке на панели и рисунку 9. Плюс батареи подсоединить к плюсовому контакту «+», наживить снятую ранее гайку. Затем подсоединить минус батареи к разъему «-». Затянуть гайки, момент затяжки должен составлять 6-8 Н·м.

5.3.7 Разъем P1 – 15EDGVC-3.5-07P-14-00A(H). Ответная часть – 15EDGK-3.5-07P-14-00A(H).

Рисунок 10 – 15EDGK-3.5-07P-14-00A(H)

Разъем Р1 предназначен для подключения энкодера и термодатчика двигателя.

Список поддерживаемых видов энкодеров:

- Собственной разработки компании «Миландр» (входит в состав двигателей);
- Энкодер синус-косинусного типа;
- 3 цифровых датчика Холла. Для холлов с открытым коллектором необходима подтяжка к питанию через резистор номиналом 1 кОм.
- 3 аналоговых датчика Холла. Допускается использование 2 датчиков, подключенных к контактам 3 и 4.

Список поддерживаемых видов термодатчиков:

- NTC10K;
- NTC100K;
- KTY83-122;
- KTY84-130;
- KTY81-210.

Переключение между энкодерами и термодатчиками осуществляется либо через программу «Конфигуратор Инвертора» (подключение к компьютеру осуществлять с помощью интерфейса USB-CAN ISO) (п.5.8), либо через Экран управления (п.5.7).

Таблица 9 – Обозначения контактов разъема Р1

Конт.	Цепь	Назначение
1	TmotSense	Терморезистор
2	TmotGND	Терморезистор
3	Hall1	Сигнал с первого датчика Холла
4	Hall2	Сигнал со второго датчика Холла
5	+5s	Питание энкодера
6	GNDs	Земля энкодера
7	Hall3	Сигнал с третьего датчика Холла

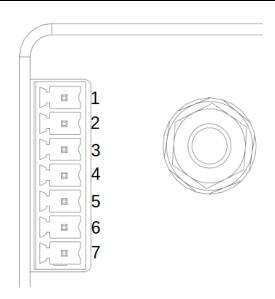


Рисунок 11 – Подключение разъема Р1

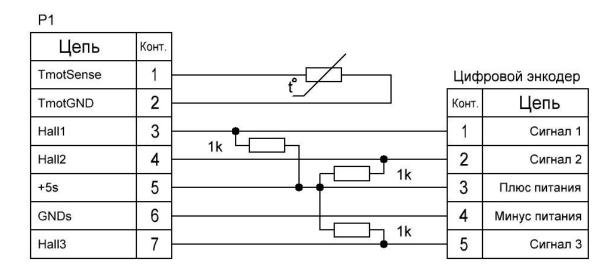


Рисунок 12 – Пример подключения цифрового энкодера и термодатчика

5.3.8 Разъем P2 – 15EDGVC-3.5-05P-14-00A(H). Ответная часть – 15EDGK-3.5-05P-14-00A(H).

Рисунок 13 – 15EDGK-3.5-05P-14-00A(H)

Через разъем Р2 подключается САN шина для управления и обменом телеметрией с периферийными устройствами. Для подключения встроенного в инвертор терминального резистора 120 Ом необходимо в ответном разъеме установить перемычку между контактами term и CANH. Допускается подключение внешнего источника к пятому контакту с напряжениями от 5 до 12 В относительно 4 контакта (GND) для питания экрана управления.

Таблица 10 – Обозначения контактов разъема Р2

Конт.	Цепь	Назначение
1	term	Разъем терминации CAN
2	CANH	Сигнал CANH
3	CANL	Сигнал CANL
4	GND	Земля
5	PWR	Выход для питания Экрана управления

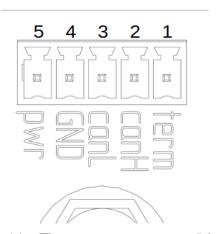


Рисунок 14 – Подключение разъема Р2

5.3.9 Разъем РЗ – 15EDGVC-3.5-06P-14-00A(H). Ответная часть – 15EDGK-3.5-06P-14-00A(H).

Рисунок 15 – 15EDGK-3.5-07P-14-00A(H)

Разъем Р3 предназначен для аналогового управления контроллером. Ко всем 4 контактам (PIN1-4) может быть подключено аналоговое управление в виде:

- Переменного резистора 200...1000 Ом (подключается к контактам +5s, GNDs, регулируемый контакт к одному из контактов аналогового управления);
- Источник напряжения 0...5В (подключается минусом GNDs,
 плюсом на один из контактов аналогового управления);
- Для управления может быть использован источник ШИМсигнала, который подключается через контакты +5s
 (маломощный выход, допускается подключение нагрузки с потреблением не более 50 мА) и GNDs, сигнальный выход этого контроллера может быть подключен только к PIN1. Частота – 50-400 Гц (Таблица 1).
- Инвертор может сам выступать источником ШИМ сигнала. При настройке через «Конфигуратор Инвертора», ШИМ сигнал будет подаваться на PIN2 с частотой 400 Гц и амплитудой 3,3 В.

Таблица 11- Обозначения контактов разъема РЗ

+5s	Питание аналоговых органов управления
GNDs	Земля
PIN1	Первый контакт
PIN2	Второй контакт
PIN3	Третий контакт
PIN4	Четвертый контакт
	GNDs PIN1 PIN2 PIN3

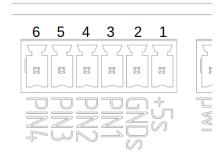


Рисунок 16 – Подключение разъема Р3

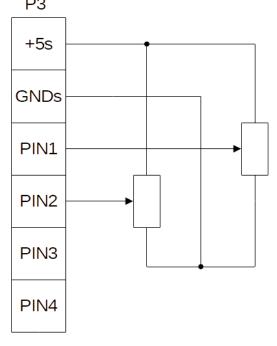


Рисунок 17 – Пример схемы подключения аналогового управления

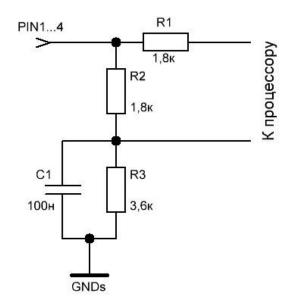


Рисунок 18 – Внутреннее строение контактов аналогового управления При настройке контакта в качестве цифрового выхода для формирования напряжения используются обе процессорных линии.

5.3.10 Сигналы разъемов P1, P2 и P3 гальванически развязаны от батарейного питания, но не являются гальванически развязанными между собой.

5.4 Подключение КТИ 150-3 и КТИ 150-6

- 5.4.1 Для подключения использовать кабели с минимальным сечением 16 мм^2 для КТИ 150-3 и 35 мм^2 для КТИ 150-6 с обжатыми наконечниками, указанными в таблице 1 и винты M6 из нержавеющей стали. Глубина резьбы контакта «B+» 10мм, «B-» и фазных 12мм. Перед подключением батареи и двигателя убедится в отсутствии загрязнения и оксидного слоя.
- 5.4.2 Рекомендуется сначала подключить двигатель, затем кабели питания подключить к изделию и в последнюю очередь произвести соединение кабелей питания с силовыми клеммами батареи.
- 5.4.3 Все разъемы инвертора КТИ 150-3 и КТИ 150-6 представлены на рисунках ниже.

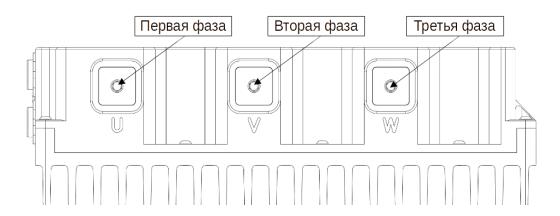


Рисунок 19 – Фазная сторона

Рисунок 20 – Батарейная сторона

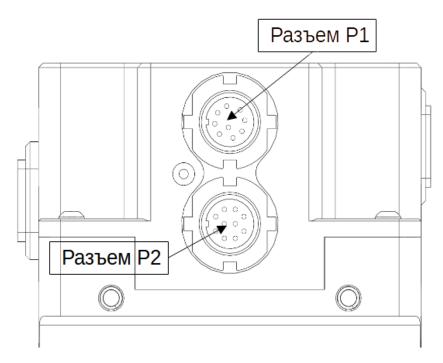


Рисунок 21 – Сторона с разъемами КТИ 150-3 (аналогично в КТИ 150-6 исполнении -00)

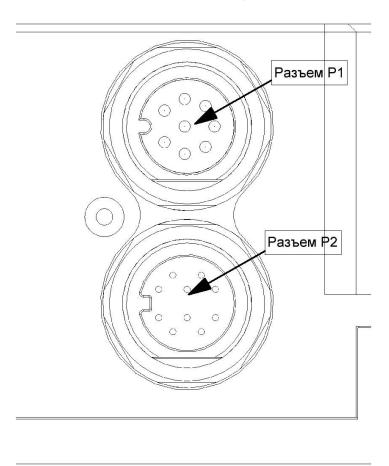


Рисунок 22 - Сторона с разъемами КТИ 150-6 исполнения -01

5.4.4 Подключение двигателя

5.4.4.1 Подключение осуществлять согласно рисунку 19 и обозначениям на крышке изделия: U, V и W — первая, вторая и третья фазы соответственно. Поочередно подсоединить фазы двигателя и наживить винты на фазные выходы изделия. После прокладки и фиксации кабелей затянуть винт каждой фазы, момент затяжки должен составлять 6-8 Н·м.

5.4.5 Подключение батареи

5.4.5.1 Подключение осуществлять согласно маркировке на крышке и рисунку 20. Плюс батареи подсоединить к выходу «В+», наживить винт. Затем также подсоединить минус батареи к выходу «В–». Затянуть винт, момент затяжки должен составлять 6-8 Н·м.

5.4.6 Разъем Р1 (**КТИ 150-3**) – РРС4-10-1-1-В. Ответная часть – розетка РРС3-10А-7-1В.

Рисунок 23 – РРС3-10А-7-1В

Разъем Р1 предназначен для подключения энкодера и термодатчика двигателя.

Список поддерживаемых видов энкодеров:

- Собственной разработки компании «Миландр» (входит в состав двигателей);
- Энкодер синус-косинусного типа;
- 3 цифровых датчика Холла. Для холлов с открытым коллектором необходима подтяжка к питанию через резистор номиналом 1 кОм.
- 3 аналоговых датчика Холла. Допускается использование 2 датчиков, подключенных к контактам 10 и 6.

Список поддерживаемых видов термодатчиков:

- NTC10K;
- NTC100K;
- KTY83-122;
- KTY84-130;
- KTY81-210.

Переключение между энкодерами и термодатчиками осуществляется либо через программу «Конфигуратор Инвертора» (подключение к компьютеру осуществлять с помощью интерфейса USB-CAN ISO) (п.5.8), либо через Экран управления (п.5.7).

Таблица 12 – Обозначения контактов разъема Р1

Конт.	Цепь	Назначение
1	Служебный контакт	Не использовать
2	Служебный контакт	Не использовать
3	Служебный контакт	Не использовать
4	TmotGND	Терморезистор
5	Hall3	Сигнал с третьего датчика Холла
6	Hall2	Сигнал со второго датчика Холла
7	TmotSense	Терморезистор
8	GNDs	Земля энкодера
9	+5s	Питание энкодера
10	Hall1	Сигнал с первого датчика Холла

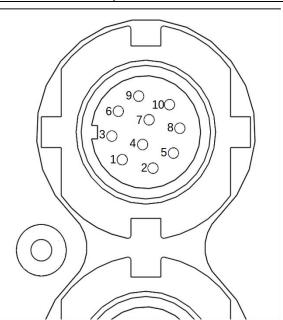


Рисунок 24 – Подключение разъема Р1 (лицевой вид)

5.4.7 Разъем Р2 (**КТИ 150-3**) – РРС4-10-1-3-В. Ответная часть – розетка РРС3-10А-7-3В.

Рисунок 25 – РРС3-10А-7-3В

Через разъем Р2 подключается САN шина для управления и обменом телеметрией с периферийными устройствами и имеются контакты для подключения аналогового управления. Принцип работы аналогового управления аналогичен п.5.3.9

Таблица 13 – Обозначения контактов разъема Р2

Конт.	Цепь	Назначение
1	CANL	Сигнал CAN Low
2	PWR	Выход для питания Экрана управления
3	CANH	Сигнал CAN High
4	+5s	Питание аналоговых органов управления
5	PIN3	Третий контакт управления
6	GND	Земля
7	PIN2	Второй контакт управления
8	PIN4	Четвертый контакт управления
9	GNDs	Земля аналогового управления
10	PIN1	Первый контакт управления

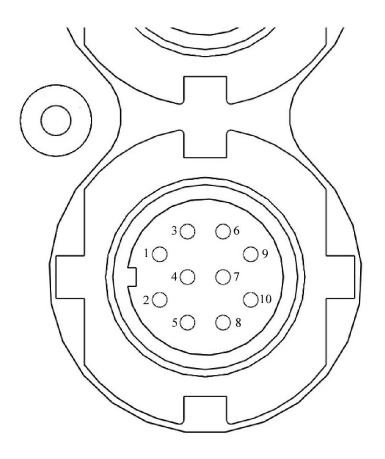


Рисунок 26 – Подключение разъема Р2 (лицевой вид)

5.4.8 Разъем Р1 (**КТИ 150-6 (исполнение -01)**) – LLT-M16-10008M2861. Ответная часть – розетка LLT-M16-10008F1051.

Рисунок 27 - LLT-M16-10008F1051

Разъем Р1 предназначен для подключения энкодера и термодатчика двигателя.

Список поддерживаемых видов энкодеров:

- Собственной разработки компании «Миландр» (входит в состав двигателей);
- Энкодер синус-косинусного типа;
- 3 цифровых датчика Холла. Для холлов с открытым коллектором необходима подтяжка к питанию через резистор номиналом 1 кОм.
- 3 аналоговых датчика Холла. Допускается использование 2 датчиков, подключенных к контактам 2 и 3.

Список поддерживаемых видов термодатчиков:

- NTC10K;
- NTC100K;
- KTY83-122;
- KTY84-130;
- KTY81-210.

Переключение между энкодерами и термодатчиками осуществляется либо через программу «Конфигуратор Инвертора» (подключение к компьютеру осуществлять с помощью интерфейса USB-CAN ISO) (п.5.8), либо через Экран управления (п.5.7).

Таблица 14 – Обозначения контактов разъема Р1

Конт.	Цепь	Назначение
1	TmotGND	Терморезистор
2	Hall1	Сигнал с первого датчика Холла
3	Hall2	Сигнал со второго датчика Холла
4	+5s	Питание энкодера
5	GNDs	Земля энкодера
6	Hall3	Сигнал с третьего датчика Холла
7	TmotSense	Терморезистор
8	NC	Не используется

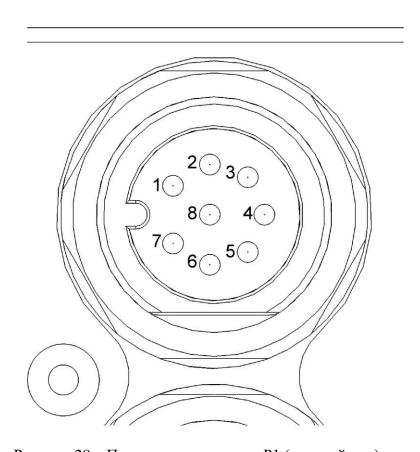


Рисунок 28 – Подключение разъема Р1 (лицевой вид)

5.4.9 Разъем Р2 (**КТИ 150-6 (исполнение -01)**) – LLT-M16-0510M2861. Ответная часть – розетка LLT-M16-05010F1051.

Рисунок 29 - LLT-M16-05010F1051

Через разъем Р2 подключается САN шина для управления и обменом телеметрией с периферийными устройствами и имеются контакты для подключения аналогового управления. Принцип работы аналогового управления аналогичен п.5.3.9

Таблица 15 – Обозначения контактов разъема Р2

Конт.	Цепь	Назначение
1	GND	Земля
2	CANL	Сигнал CAN Low
3	CANH	Сигнал CAN High
4	+5s	Питание аналоговых органов управления
5	PIN1	Первый контакт управления
6	PIN2	Второй контакт управления
7	PIN4	Четвертый контакт управления
8	PWR	Выход для питания Экрана управления
9	GNDs	Земля аналогового управления
10	PIN3	Третий контакт управления

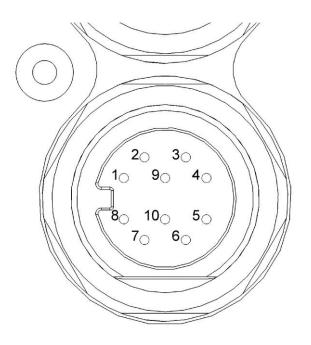


Рисунок 30 – Подключение разъема Р2 (лицевой вид)

5.4.10 Сигналы разъемов P1 и P2 гальванически развязаны от батарейного питания, но не являются гальванически развязанными между собой.

5.5 Включение устройства

- 5.5.1 Питание не от батареи допускается только выпрямленным напряжением без переменной составляющей. При подаче напряжения от блока питания не использовать рекуперативный режим: в программе «Конфигуратор инвертора» (п.5.8) во вкладке «Режим» поле «Максимальный ток торможения» установить в ноль и сохранить настройки.
- 5.5.2 Не допускается использование изделия без плавного пуска. Подача питания от батареи, либо от блока питания должна осуществляться плавно. Это осуществляется включением в цепь питания сопротивления в виде резистора номиналом 5-50 Ом и выключателей, рассчитанных из выбранного резистора: при подаче напряжения 120 В и резисторе 5 Ом выключатель должен быть рассчитан на 150 В и 25 А. Порядок включения:
 - Подать питание с блока питания;
 - Замкнуть выключатель S1;
 - Подождать 10 секунд;
 - Замкнуть выключатель S2.

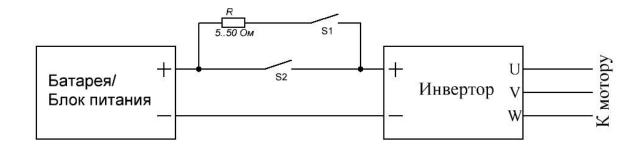


Рисунок 31 – Плавный пуск при использовании сторонних батарей

При использовании Батареи или Системы BMS-600 производства Миландр резистор и выключатели не нужны, так как у нее имеется встроенный плавный пуск (Soft start).

5.6 Общая схема подключения

На рисунках 32-34 показаны общие схемы подключения устройств силового привода для КЛИ и КТИ изделий соответственно.

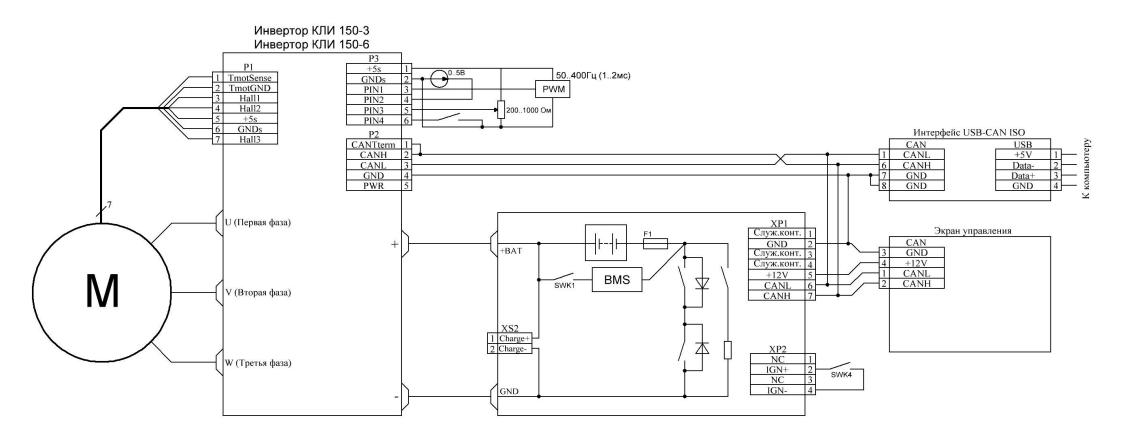


Рисунок 32 – Общая схема для инверторов КЛИ 150-3 и КЛИ 150-6

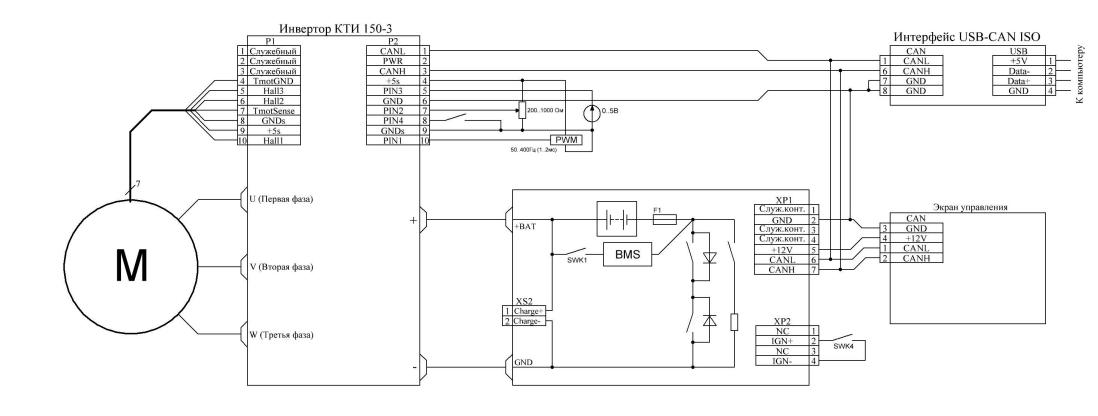


Рисунок 33 – Общая схема для инвертора КТИ 150-3

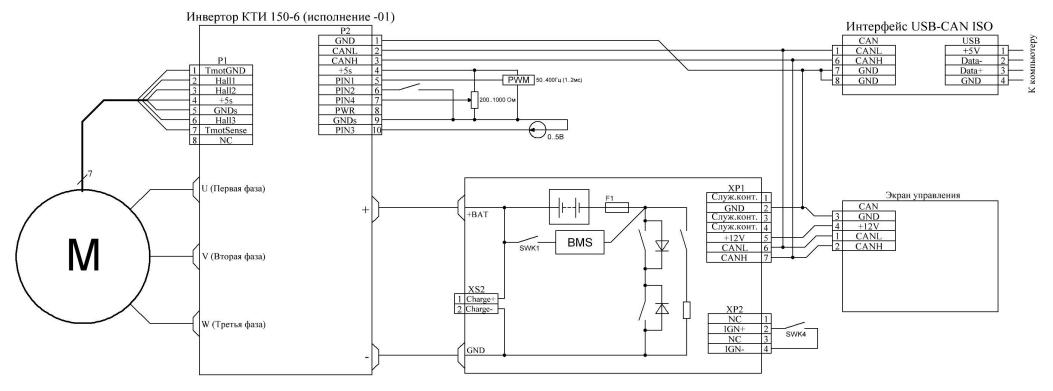


Рисунок 34 – Общая схема для инвертора КТИ 150-6 исполнение -01

5.7 Работа с Экраном управления

5.7.1 Работа и настройка инвертора может происходить при помощи Экрана управления, подключаемого к CAN-линии. Подробное описание работы с устройством представлено в соответствующем руководстве по эксплуатации экрана управления (доступно для скачивания на сайте).

5.8 Подключение к компьютеру

5.8.1 Также для работы и настройки инвертора может быть использована программа «Конфигуратор Инвертора». Данная программа также дает возможность калибровки, управления инвертором и просмотра его состояния. Флаги состояний представлены в таблице 16. Последняя версия программы и ее руководство пользователя доступны для скачивания на сайте. Для подключения инвертора к программе «Конфигуратор Инвертора» необходимо использовать Интерфейс USB-CAN ISO.

5.9 Работа с Интерфейс USB-CAN ISO

- 5.9.1 Подключите устройство к компьютеру через USB и к CAN сети через разъем DB9. Запустите программу, идущую с этим устройством
- 5.9.2 Для включения терминации CAN переведите переключатель, показанный на рисунке 35, в нижнее положение.

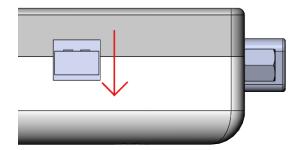


Рисунок 35 – Переключатель для включения терминации

5.9.3 Обозначения контактов разъема DB9 показаны на рисунке 36

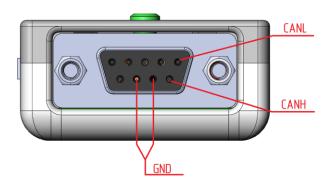


Рисунок 36 – Обозначения контактов Интерфейса USB-CAN ISO

5.9.4 Состояние светодиода:

- Светодиод выключен устройство выключено
- Светодиод мигает устройство подключено к компьютеру
- Светодиод включен устройство подключено к компьютеру, к
 CAN линии и готово к использованию

5.10 Калибровка устройства

Калибровку необходимо проводить от аккумуляторной батареи, способной кратковременно выдавать мощность до 6 кВт. В процессе калибровки двигатель будет медленно вращаться, в это время он не должен быть нагружен. Если во время калибровки происходит перегрев двигателя, калибровка будет приостановлена на минуту, затем автоматически продолжена.

5.10.1 Калибровка через Экран управления

При первом подключении к инвертору, на главном экране в нижней строке будут сообщения об ошибках калибровок (полный список ошибок представлен в таблице 16). Процесс калибровки:

- 1) Перейти в меню настроек (4 кнопка)
- 2) Выбрать пункт «калибровка токов» и дождаться ее выполнения. На экране будет отображаться значение тока, которое должно плавно нарастать до уровня установленного максимального фазного тока.
- 3) В том же меню настроек перейти в пункт «настройка энкодера», выставить используемые значения и нажать кнопку калибровки.

5.10.2 Калибровка через программу «Конфигуратор Инвертора»

- 1) Подключить интерфейс USB-CAN ISO к инвертору (см. пп. 5.3.8 и 5.4.7).
- 2) Подключить интерфейс USB-CAN ISO к компьютеру (см п.5.9)
- 3) Запустить программу «Конфигуратор Инвертора».
- 4) Во вкладке Ток/напряжение выставить максимальный фазный ток двигателя (по умолчанию инвертор настроен на двигатели собственного производства).
- 5) Во вкладке Температуры выставить значение предельной температуры двигателя и выбрать использующийся датчик температуры (по умолчанию инвертор настроен на двигатели собственного производства).
- 6) Сохранить настройки.
- 7) Перейти на вкладку «Калибровка» и нажать кнопку «Начать финальную калибровку тока» и дождаться ее завершения. Ток во время калибровки должен плавно нарастать до установленного в поле «Максимальный фазный ток».

- 8) Выбрать тип используемого энкодера, число пар полюсов двигателя и ток калибровки угла (чем он будет больше, тем точнее будет калибровка, но тем больше будет нагрев. Также ток не должен превышать половину максимального фазного тока инвертора и двигателя).
- 9) Нажать кнопку «Начать калибровку угла» и дождаться завершения.
- 10) Если необходимо вращение двигателя в противоположную сторону, нужно отметить пункт «реверс» и запустить повторную калибровку угла. Из-за возможности перегрева не рекомендуется проводить две калибровки угла одна за другой.

После изменения любого параметра на вкладке «Калибровки» необходимо провести повторную калибровку угла, нажав соответствующую кнопку.

5.11 Таблица возможных флагов

Ниже представлена таблица возможных сообщений, выводящихся на главный экран, их флаги и значения.

Таблица 16 – Таблица возможных сообщений

Сообщение	Протокол	Значение
Двигатель запитан	StopNotGo != 1	Флаг остановки двигателя
Превышение фазного тока	OverCurrent	Флаг сработавшей защиты по превышению лимита фазного тока
Перегрев инвертора	OverFetTemp	Флаг начала линейного ограничения фазного тока по достижению транзисторами заданной температуры
Перегрев двигателя	OverMotTemp	Флаг начала линейного ограничения фазного тока по достижению мотором заданной температуры

		Флаг ограничения выходной
Недонапряжение		мощности по причине разряда
_	UVLO	батареи ниже допустимого
инвертора		
		предела
Аппаратная защита	DESAT	Флаг сработавшей аппаратной
инв.		защиты транзисторов
		Флаг отсутствия
Ошибка входного		управляющего ШИМ сигнала
ШИМ инв.	PWM_Input_1_Fail	на входе PIN1 (при
		использовании ШИМ
		управления)
		Флаг выхода за пределы
Ошибка аналог.	AccDecInFail	управляющего аналогового
управл.	ACCDECINFALL	сигнала (при использовании
		аналогового управления)
0 5		Флаг выхода за безопасные
Ошибка	ODELO	пределы ошибки
регулировки тока D		регулирования тока по оси D
Ошибка		Флаг ошибки калибровки
калибровки угла	AnalogEncoderCalibError	энкодера двигателя
Ошибка при		Флаг ошибки калибровки
калибровке	CalibSafetyIssue	датчиков тока
Перенапряжение		Флаг превышения питающего
инвертора	OVLO	напряжения
Не выполнена		1
финальная	LinearityCalibFailed	Не проведена финальная
калибровка	ninear rey carror arred	калибровка инвертора
кшторовки		Флаг нахождения в процессе
Идет калибровка	CalibInProgress	
	Bat_OverHeat	калибровки
		Флаг ограничения выходной
Перегрев батареи		мощности по причине нагрева
_		батареи выше допустимого
		предела

Низкое напр.	UVLO VDDA	Недостаточное напряжение на
процессора	_	управляющей плате
Переразряд батареи	BMS_UVLO_TIMER	Флаг ограничения выходной мощности по причине разряда хотя бв одной из ячеек батареи ниже допустимого предела
Недонапряжение	UVLO V5V	Недостаточное напряжение
5B		датчиков
Перегрев BMS	BMS_Fets_OverHeat	Ограничения выходной мощности по причине перегрева силовой платы BMS
Неисправность энкодера	EncoderFailed	Ошибка энкодера
Ток ограничен	PhaseCurrentLimReduced	Фазный ток ограничен

6 Перечень возможных неисправностей изделия

Перечень возможных неисправностей изделия и рекомендации по их устранению приведены в таблице 17.

Таблица 17 – Возможные неисправности и методы их устранения

Неисправность	Причина неисправности	Метод устранения
Не светится светодиодный индикатор на батарейной панели	Инвертор не подключен к электрической сети. Отсутствует напряжение в электрической сети, к которой подключен инвертор. Неисправен светодиодный	Проверить наличие подключения инвертора к электрической сети. Проверить наличие напряжения в электрической сети, к которой подключен инвертор. В случае отсутствия напряжения, обеспечить требуемое напряжение питания от электрической сети. Отправить изделие в ремонт.
	индикатор.	1 1

7 Транспортирование и хранение

7.1 Транспортирование

- 7.1.1 Транспортирование и хранение изделия осуществляется в индивидуальной упаковке, рассчитанной на транспортировку всеми видами автомобильного, железнодорожного и авиационного транспорта.
- 7.1.2 После транспортирования изделий в условиях отрицательных температур их распаковка должна производиться после выдержки в течение не менее 12 ч при температуре (20 ± 5) °C.

7.2 Хранение

- 7.2.1 Изделие должно храниться в упаковке предприятия-изготовителя в складских помещениях, защищающих изделие от воздействия атмосферных осадков, при отсутствии в воздухе паров кислот, щелочей и других агрессивных примесей, на расстоянии не менее 1 м от отопительных и нагревательных приборов.
- 7.2.2 Условия хранения: отапливаемое хранилище, температура от 5 до 40°C и относительная влажность не более 80% при температуре 25°C.